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What’s causal decision making

• Causal inference is the process of understanding the cause-
and-effect relationships between variables or events. 
• A decision-making system is an approach used to make 

informed choices in various contexts.
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Causal decision-making system usually apply causal inference technics to make 
a better decision to meet the needs of  the requirements of explanation, 
generalization or safety etc. .



Causality and Decision Making
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• Reasoning: Understanding the factors in the system 
•Making decision: Learning how to take actions

Causal model
Agent Environment

Decision making system

context / state

reward

decision/action



Advantages of causal decision making

• Clarifying Causal Relations: Identify the key factors and avoid 
being misled by spurious correlations.

• Enhancing Decision Accuracy and Effectiveness: predict the
outcomes make the wisest choices.

• Reducing Decision Risks: Identify potential bad effects and 
avoid risks of generalization.
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Outline

• Backgrounds
• Intro to causality and decision-making system.

• Current causal decision-making method
• Causality in Static and Dynamic system, including environment understanding, 

learning to intervene, counterfactual reasoning

• Advanced topic
• Challenges about causality in LLM agents
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The technical details please refer to the related papers



Background:
Causal Inference 

The Pearl’s Hierarchy
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Correlation doesn’t mean causality
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Causal information rather than commonly used association has more generalization 
ability in prediction task.

thermometer 
temperature

Ice cream sales

Causality
Correlation 

weather



The philosophy of Causality
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• Descartes ascribed cause to eternal truth.

The truth of the world

The truth of the world in our head

Imagine what will happen --------
Consciousness

Judea Pearl. Causality



Causal Diagram
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C

D R

Context

Decision Reward

D = 𝑓(𝐶, 𝜖!)
𝑅 = 𝑓(𝐷, 𝐶, 𝜖")

• Causal Model

𝑃(𝐶, 𝐷, 𝑅)

𝑃(𝑅|𝐷)

𝐺 =

Decision effect



Causal Diagram
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• Causal Model

D = 𝑑

𝑅 = 𝑓(𝐶, 𝐷, 𝜖")

• Intervention

𝑃(𝑅|𝐷 = 𝑑)

Observational

𝑃(𝑅|𝑑𝑜 𝐷 = 𝑑 )

Interventional

C

D R

Context

Decision Reward

C

D R

Context

Decision Reward

𝐺 = 𝐺!"($) =



Intervention and correlation probability
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CancerSmoking

𝑃 𝐶 𝑑𝑜 𝑆 = 𝑃(𝐶|𝑆) CancerSmoking

𝑃 𝐶 𝑑𝑜 𝑆 = 𝑃(𝐶)

Genotype



Causal Diagram
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• Causal Model

D = 𝑑′

𝑅 = 𝑓(𝐷, 𝐶, 𝜖")

• Counterfactual

𝑃(𝑅!#$!|𝐷 = 𝑑, 𝑅 = 𝑟)

Counterfactual

C

D R

Context

Decision Reward

C

D R

Context

Decision Reward

𝐺 = 𝐺!"($) =



Structure Causal Model

• Endogenous Variables: 𝑉 = 𝑉!, . . , 𝑉" , the variables in the 
system
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A structure causal model M is a tuple of factors {𝑉, 𝑈, 𝐹, 𝑃(𝑢)}

𝑉!

𝑉#

𝑉$

𝑉%



Structure Causal Model

• Exogenous Variables: U = 𝑈!, . . , 𝑈& , the variables out of 
the system, but have causal effect in system

14

A structure causal model M is a tuple of factors {𝑉, 𝑈, 𝐹, 𝑃(𝑢)}

𝑉!

𝑉#

𝑉$

𝑉%
𝑈&

𝑈&



Structure Causal Model

• Confounder: the variable 𝑈' is a confounder if and only if it
influence both cause and effect
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The confounder will influence the causal estimation, the method doesn’t consider 
confounder may lead to the estimation error which called the Simpson’s Paradox.

𝑉!

𝑉#

𝑉$

𝑉%
𝑈&

𝑈&



Simpson's Paradox
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Structure Causal Model

• Functions: F = 𝑓!, . . , 𝑓" , the generative function determine 
endogenous variables 𝑉' = 𝑓' 𝑝𝑎' , 𝑈' , where 𝑝𝑎' ⊂ 𝑉,𝑈' ⊂ 𝑈.
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A structure causal model M is a tuple of factors {𝑉, 𝑈, 𝐹, 𝑃(𝑢)}

𝑉!

𝑉#

𝑉$

𝑉%
𝑈&

𝑈&



Pearl’s Causal Hierarchy
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Association Intervention

Question:
What if?

What will 
happen if 

someone keep 
smoking

Question:
What is?

What does the
smoking tell us 
about the lung 

cancer.

Counterfactual

Question:
Was it?

Will the lung 
cancer get worse 

if someone 
smoking.  

Seeing Doing Imagination



Pearl’s Causal Hierarchy
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Association Intervention

Question:
What if?

Reinforcement 
Learning

Question:
What is?

(Un)Supervised 
Learning

Counterfactual

Question:
What if?

Retrospective 
Model-based RL

Seeing Doing Imagination



Pearl’s Causal Hierarchy
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Association Intervention

Question:
What if?

𝑃(𝑌 | 𝑑𝑜(𝑋))

Question:
What is?

𝑃(𝑋, 𝑌)

Counterfactual

Question:
What if?

𝑃(𝑌'()! |𝑋 = 𝑥, 𝑌 = 𝑦)

Seeing Doing Imagination

Probabilistic 
Modeling

Causal  
Modeling

Causal  
Modeling



Causal Diagram
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• Causal Model

D = 𝑑

𝑅 = 𝑓(𝐶, 𝐷, 𝜖")

• Intervention

𝑃(𝑅|𝐷 = 𝑑)

Observational

𝑃(𝑅|𝑑𝑜 𝐷 = 𝑑 )

Interventional

C

D R

Context

Decision Reward

C

D R

Context

Decision Reward

𝐺 = 𝐺!"(*) =

When the underling causal model is unknown, the intervention 
probability cannot be directly inferred from the Observation data



Causal Diagram
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• Causal Model

D = 𝑑′

𝑅 = 𝑓(𝐷, 𝐶, 𝜖")

• Counterfactual

𝑃(𝑅!#$!|𝐷 = 𝑑, 𝑅 = 𝑟)

Counterfactual

C

D R

Context

Decision Reward

C

D R

Context

Decision Reward

𝐺 = 𝐺!"(*) =
When the underling causal model is unknown, the counterfactual 

probability cannot be directly inferred from the interventional 
probability



Causal Diagram
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C

D R

Context

Decision Reward

• Causal Model

C

D R

Context

Decision Reward

• Intervention

𝐺 = 𝐺!"($) =

Understanding the underling SCMs is a prerequisite for inferring
intervention and counterfactual



Background:
Causal Inference from Observation data
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The scenario where ideal intervention distribution is hard to get 



Observation from the world
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Observation is the Mixture of factors
Unknown causal relations



Understanding the world
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• How to identify the causal structure, causal effect from the 
pure observations? 
• It was decided by the property of data and the form of model function but

not related to the way we train the model.



Understanding the world

• Causal Disentangle
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• Causal Discovery

𝑠!

𝑠"

𝑠#

𝑠$

Observation State/Representation Causal Graph

𝑉, = 𝑓, 𝑝𝑎,, 𝑈,

Structure Causal Models



C

D R

Context

C

D R

Context𝐺 = 𝐺!"($) =

• Intervention identification
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𝑃(𝑅|𝑑𝑜(𝐷 = 𝑑))

Understanding the world

𝑃(𝑅|𝐷)
Decision Reward Decision Reward



C

D R

Context𝐺!"($) =

• Counterfactual estimation
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𝑃(𝑅|𝑑𝑜(𝐷 = 𝑑))

Understanding the world

𝑃(𝐶!#$! , 𝑆!#$!|𝐶 = 𝑐, 𝐷 = 𝑑, 𝑅 = 𝑟)

Decision Reward



Causal Disentangle
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Causal

Decoder

𝓧′

𝝐

𝒛 Mask

Encoder

𝓧,𝒖

𝑨

① Inference ② Generate

𝒖

𝒛 = 𝑨𝑻𝒛 + 𝝐 = 𝑰 − 𝑨𝑻 "#𝝐

• Causal disentangle aims at 
finding the causal factors 
from observation data. [Yang 
et al., Suter et al., Besserve
et al. ]

• The causal factors might 
have the causal relationships.



Identifiability in Disentanglement

• Identifiability
Uniquely determine the representation of each factor from 
observed data. [Khemakhem et al. 1, Khemakhem et al. 2]

𝑝( 𝑥, 𝑧 𝑢) = 𝑝 𝑥 𝑧 𝑝(𝑧|𝑢)
Representation contains all the information of the underling 
factors.
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Causal Direction Discovery

• Independent causal mechanism

• D-Separation
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A fork 𝐴 ← 𝐵 → 𝐶 or a chain 𝐴 → 𝐵 → 𝐶 such that the middle 
vertex 𝐵 is in 𝑍, or a collider 𝐴 → 𝐵 ← 𝐶 such that middle vertex 

𝐵, or any descendant of it, is not in 𝑍.



Intervention Identification

• Front door criterion
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• Back door criterion

CancerSmoking

Genotype

CancerSmoking

Genotype



Intervention Identification
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• Back door criterion

CancerSmoking

Genotype



Intervention Identification
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• Back door criterion

CancerSmoking

Genotype



Front door criterion

• Front door criterion
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CancerSmoking

Genotype



Front door criterion

• Front door criterion
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CancerSmoking

Genotype



Causal Diagram

38

CancerSmoking

𝑃 𝐶 𝑑𝑜 𝑆 = 𝑃(𝐶|𝑆)

CancerSmoking

𝑃 𝐶 𝑑𝑜 𝑆 = 𝑃(𝐶)

Genotype

CancerSmoking

Genotype

𝑃 𝐶 𝑑𝑜 𝑆 = noncomputable

CancerSmoking

Genotype

𝑃 𝐶 𝑑𝑜 𝑆 = computable



Counterfactual Estimation
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Abduction-action-prediction
• Abduction: deriving the posterior of the exogenous 

variables 𝑃 𝑈 𝑍 = 𝑧)

• Action: modifying causal graph G by removing the edges 
going into 𝑍 and set 𝑍 = 𝑧 (intervention) to derive 
𝑃 y 𝑍 = 𝑧, 𝑈

• Prediction: computing the distribution 𝑃 𝑦*+,- 𝑧) =
∫. 𝑃 𝑦 𝑍 = 𝑧 𝑝 𝑈 𝑍 = 𝑧) 𝑑𝑈



Conclusion of Causal Inference so far

• Basic Concept
• Association, intervention and counterfactual and 

estimation
•Models
• Structure Causal models
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Background:
Decision Making System

41



Static decision making

• Goal oriented: making decision 
by modeling the environment.
• Doesn’t care about long-term 

interaction
Online advertising, auction, 
recommendation, healthcare…
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Big Picture

•Making decision by maximizing the short-term reward (user 
feedback …) or just by the rules.
• The method relies on modeling the environment.
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Agent
decision/action

Environment

Collect as
dataset

context / state

modeling environment



Big Picture

• The decision based on the domain knowledge, prior rules or 
the model learned from historical data.
• Learning to make decision without directly interaction with 

environment like planning and MBRL.
44

Agent
decision/action

Environment

Collect as
dataset

context / state

modeling environment



An example 

• Agent (the system) making 
decision (provide impression 
list) based on context.

• The decision aim to get well 
user selection.
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C

R S

Context

Recommendation List User Selection

Agent



Dynamic decision making

•Goal oriented: making 
decision to maximize long-
term reward.
• The decision based on the 

interaction with 
environment.
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The dynamic decision making system

•Making decision to maximize environment reward.
•Making decision by interaction with environment.
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Agent Environment

context / state

reward

decision/action



The dynamic decision making system

• General approach using reinforcement learning (RL)/online 
learning.
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Agent Environment

context / state

reward

decision/action



Factors in RL

• Observation (𝑂) : The observation from environment
• State (𝑆) : the feature to describe current state of 

environment and agent
• Action (𝐴) : Agent takes action to interact with environment.
• Reward(𝑅): the environment feedbacks regarding action in 

current state.
• Policy (𝜋): the probability to take action 𝑎/ = 𝜋(𝑠/)
• Transition: The probability of next state 𝑝(𝑠/0!|𝑠/ , 𝑎/)

49



Static & Dynamic
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Interaction Policy 

Static No interaction The policy based on 
maximizing the potential 

reward based on model or 
just prior rules.

Dynamic Interaction with 
environment

Maximizing the long-time 
reward.



Causality for Decision Making
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Big Picture of Causal Decision Making

• Reasoning environment
•Making better decision 
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Causal model
Agent Environment

Decision making system

context / state

reward

decision/action



Causal Decision Making

• Understanding the world/environment
•What to intervene
•What’s the counterfactual results

• Better explanation / reasoning ability
• Decision for generalization, robustness and sample efficiency
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Tasks for Causal Decision Making
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Understanding 
causal variable

Scenario:
POMDP, Static 

DM

Tasks:
Causal 

disentangle

Understanding 
causal model

Scenario:
RL, Static DM

Tasks:
Causal 

discovery

Where to 
intervene

Scenario:
RL, Static DM 

Tasks:
Intervention
identification

Understanding 
Counterfactual

Scenario:
Static DM

Tasks:
Counterfactual 

estimation

Reasoning Decision Making 



General process
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Understanding the world
Causal disentangle
Environment estimation

What to intervene
Find the action worth to take

Counterfactual inference
Enhance the imagination 

Reasoning 

Decision Making Decision Making 



Causal Decision Making Tasks

• Causal disentangle in RL [Sontakke et al.].
• Environment estimation: [Li et al. 1, Zholus et al, Ding et al., 

Liu et al.].

•Where to intervene: [Wang et al 1, Huang et al., ]
• Counterfactual imagination: [Li et al., Yang et al. 2, Pitis et al.]
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Causality for Decision Making
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Understanding the world by using causality



Causal Curiosity
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• Understanding the causal world [Sontakke et al.]. 



Causal Curiosity
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• Classical POMDP: 𝑂, 𝑆, 𝐴, 𝜑, 𝜃, 𝑟
• observation space 𝑂, state space 𝑆, action space 𝐴, the transition 

function 𝜑, emission function 𝜃, and the reward function 𝑟. 
• Causal POMDP
• The state are divided into the controllable state 𝑠, and the 

uncontrollable state 𝑠-



Causal Curiosity
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• Causal POMDP
• The transition function

• The Observation  

if a body on the ground (i.e., state 𝑠/1 ) is thrown upwards (i.e., 
action 𝑎/), the outcome 𝑠/0! is caused by the causal factor gravity 
(i.e., 𝑓234(𝐻, 𝑠/1 , 𝑎/) = {𝑔𝑟𝑎𝑣𝑖𝑡𝑦}),



Causal Curiosity
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• The Experiment Planner: allow the agent to discover action 
sequences such that the resultant observation trajectory is 
caused by a single causal factor



Causal Curiosity
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• Causal Inference Module: Inferring the related 
representation by observational data. 



Causal Curiosity
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• Interventions on beliefs: recursively intervene the 
environment by generated actions



Causal Curiosity
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Explain the World [Yu et al.]
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• Learning the causal model to explain the world
• Factorized MDP: 𝑆, 𝐴, 𝑂, 𝑅, 𝑃, 𝑇, 𝛾 . Each state is factorized 

into n state variables.
• SCMs: The structure causal model
• AIMs: The action influence model
• SCM to explain the world that can be converted to an AIM 

based on specially-designed structural equations



Explain the World

• SCM: The model formalizes the causal relationships between 
multiple variables.
• AIM: a causal model for RL, to generate explanations about 

why the agent take some actions.
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Explain the World
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• Causal Discovery, between current step 𝑢 ∶= (𝑠, 𝑎) and next 
step 𝑣 ∶= (𝑠′ , 𝑜)

𝑢' ∈ 𝑃𝐴(𝑣5 ) ⇐⇒ (𝑢' ⊯ 𝑣5 ∣ 𝑢6'),
• Causal Influence network (AIM)

𝑃𝑟(𝑣5 ∣ 𝑃𝐴(𝑣5 ))
• Connection between SCMs and AIM



Explain the World
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Explain the World

• The causal model might decline the efficiency of RL and 
planning
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Explanation and Planning

• Goal Orientation: Considering the causal explanation and the 
goal of the task, simontanously.
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When and Where to
intervene/take action for a better 

performance?



Causality for Decision Making
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What to intervene



Causal Enhanced Decision

• Rarely in control of the object of interest
• Physical contacts are hard to model
• Objects are enabling manipulation towards further goals.
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Knowing when and what the agent can influence with its actions [Seitzer et al.]



Causal Enhanced Decision

• Agents can be rewarded with a bonus for visiting states of 
causal influence. 
• Such a bonus leads the agent to quickly discover useful 

behavior even in the absence of task-specific rewards.
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Causal Enhanced Decision

•Modeling the environment 
• Independent Causal Mechanism
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Causal Enhanced Decision

• Empirical Evaluation of Causal Influence Detection
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Causal Enhanced Decision

• Improving Efficiency in Reinforcement Learning
• Better state exploration through an exploration bonus.
• Causal action exploration.
• Prioritizing experiences with causal influence during 

training.
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Causal Enhanced Decision

• Causal Action Influence as Reward Bonus.
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Reward of the goal + Reward of the satisfaction of causal influence detection



Causal Enhanced Decision

• Following Actions with the Most Causal Influence.
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Causal Enhanced Decision

• Causal Influence-based Experience Replay
• Prioritizing According to Causal Influence.
• influence-based prioritization (CAI-P), hindsight 

experience replay (HER)…
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Effectiveness of causality

• Sample Efficiency [Seitzer et al.]
•Generalization [Ding et al.]
• Explanation [Yu et al.]
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Causality for Decision Making
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The Wings of Counterfactual Imagination



Counterfactual estimation in decision making

• General Process
• Learning functions in SCMs 
• -> Abduction: find exogenous variables
• -> Action: generating new training samples 
• -> Prediction: different generate policy: random, learning 

based 
• Producing better samples, help to get better decisions.

82



Counterfactual estimation in decision making

• Generate counterfactual data.[Yang et al. 2]
• Randomly augmented samples : debias from historical 

policy
• Goal oriented augmented samples: better rewards.
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Counterfactual estimation in decision making

• Counterfactual estimation in World Models [Li et al.]
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Counterfactual estimation in decision making

• Counterfactual estimation in World Models
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Counterfactual estimation in decision making

• Counterfactual performance and  efficiency
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Advanced Topic:
Challenges in Reasoning and 

Decision Making of Causal LLM
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LLM basics
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• Training and Fine-tuning
• Supervised fine-tuning (SFT).
• Reward model (RM): reinforcement learning via proximal 

policy optimization (PPO) on this reward model. 
• In-context Learning
• Directly inference by providing prompts 



Can LLM tell causal rather than association?
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•Problem 1: Unstable.
• Fail to determine implicit causal but it can tell the explicit 

causal relationships.[Gao et al.]
• It can only find causal under specific prompt.[Zečević et 

al. , Hobbhahn et al.]
• Fail to find causality under very complex sentence which 

contains lot of factors.[Gao et al.]



Can LLM tell causal rather than association?
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• Problem 2: AI Hallucinations .
• From the bias between factual and counterfactual 

observations (data level)
• From the training and fine-tuning policy like RLHF 

(training level)
• From the advanced technology like CoT and in context 

learning (inference level)



Can LLM tell causal rather than association?
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Question: "What is heavier: A kilogram of metal or a kilogram of feathers?”
Answer: A kilogram of metal is heavier than a kilogram of feathers.

Question: "A kilogram of metal is heavier than a kilogram of feathers”
Answer: They weigh the same.



The boundary of LLM’s causal ability [Zhang] 
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Type 1: Identifying causal relationships using domain knowledge
Example 1: Patient: Will my minor spine injury cause numbness in my shoulder?
Example 2: Person: I am balancing a glass of water on my head. Suppose I take a quick 
step to the right. What will happen to the glass?

Type 2: Discovering new knowledge from data
Example 1: Scientist: In a new scientific experiment. I observe two variables A and B 
which were A causes B or B causes A.
Example 2: Marketing specialist: I plan to launch a new membership program 
different from our competitors X and Y. There are two ways to design the benefit as 
members. The first is "buy four and get a fifth one for free," and the other is "get 20 
dollar cash return for every 100 dollar spend". Which one should I choose?



The boundary of LLM’s causal ability [Zhang] 
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Type 3: Quantitative estimating of the consequences of actions
Example 1: Sales manager: I have 1000 dealers with the following information about 

them [...]. I can only give membership to 100 of them next year. I want the 
membership program provides the highest revenue growth. Which 100 dealers should 
I choose?

Example 2: Medical doctor: This is the third time that this patient has returned with 
lumbago. The epidural steroid injections helped him before, but not for long. I 
injected 12mn betamethasone the last two times. What is the dose that I should use 
this time?



Why LLM can not tell causality stably?
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• Bias in training/ inference data: lack of counterfactual data.
• Lack of explainable explicit identifiable causal 

relationships/representation in model designing.
• Lack of causal/counterfactual learning form like learning 

strategy or objectives. It will produce bias.
• The inference process not include causal restrictions. 



Future work: what we could do?

Let LLM get the ability of understanding the causal mechanism
• Data Level 
• The counterfactual data collection

•Model Level
• Explicit and Implicit causal model

•Method Level
• Causal constraints

• In-context learning
• Better Instruction
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Thank You!
More question feel free to reach me at 

mengyue.yang.20@ucl.ac.uk
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