

Invariant Learning via the Probability of Sufficient and Necessary Causes (NeurIPS 2023 Spotlight!)

Mengyue Yang University College London Email: <u>mengyue.yang.20@ucl.ac.uk</u> Website: <u>https://ymy4323460.github.io/</u> Paper link: <u>https://arxiv.org/pdf/2309.12559.pdf</u>

Invariant Learning

• The OOD generalization task

Train

Invariant Learning

• Invariant causal assumption across source and test distribution

•
$$Ps(Y | C = c) = Pt(Y | C = c)$$

- Extract causal feature for OOD generalization.
 - Infer causal feature from observation data
 - Predict label y from causal feature

$$y = \operatorname{sign}[\mathbb{E}_{\mathbf{c} \sim P_t(\mathbf{C} | \mathbf{X} = \mathbf{x})} \mathbf{w}^\top \mathbf{c}].$$

(b) Causal graph

- Is causal representation enough in invariant learning?
- What kind of causal information is essential?
- -- The sufficient and necessary causes!

Is that a cat? No!

- A is a Sufficient cause of **B** means when we know event **A**, the result **B** will happen.
- A is a Necessary cause of **B** means when the result **B** comes out, the event **A** must happened.

Pointy ear is necessary but insufficient Cat feet is sufficient but unnecessary Short label is sufficient and necessary

- Defining the sufficient and necessary causes.
 - Chapter 9 in book: Causality
 - Considering the counterfactual probability on binary variables X and Y

Definition 2.1 (Probability of Necessary and Sufficient (PNS) (Pearl, 2009)). Let the specific implementations of causal variable C as c and \bar{c} , where $\bar{c} \neq c$. The probability that C is the necessary and sufficiency cause of Y on test domain \mathcal{T} is

$$PNS(\mathbf{c}, \bar{\mathbf{c}}) := \underbrace{P_t(Y_{do(\mathbf{C}=\mathbf{c})} = y \mid \mathbf{C} = \bar{\mathbf{c}}, Y \neq y)}_{\text{sufficiency}} P_t(\mathbf{C} = \bar{\mathbf{c}}, Y \neq y) + \underbrace{P_t(Y_{do(\mathbf{C}=\bar{\mathbf{c}})} \neq y \mid \mathbf{C} = \mathbf{c}, Y = y)}_{\text{necessity}} P_t(\mathbf{C} = \mathbf{c}, Y = y).$$

$$(2)$$

• Understanding PNS

The 'cat feet' patch is sufficient but unnecessary

We assume $P(Y_{do(C=1)} = 1) = 1$ and $P(Y_{do(C=0)} = 0) = 0.5$, P(Y = 1) = 0.75, P(C = 1, Y = 1) = 0.5, P(C = 0, Y = 0) = 0.25, P(C = 0, Y = 1) = 0.25.

Now, applying the concept of the probability of sufficiency and necessity, we obtain:

Probability of necessity: $P(Y_{do(C=0)} = 0 | Y = 1, C = 1) = \frac{P(Y=1) - P(Y_{do(C=0)}=1)}{P(Y=1, C=1)} = 0$

Probability of sufficiency: $P(Y_{do(\mathbf{C}=1)} = 1 | Y = 0, C = 0) = \frac{P(Y_{do(C=1)}=1) - P(Y=1)}{P(Y=0, C=0)} = \frac{1 - 0.75}{P(Y=1, C=1)} = 1$

• Understanding PNS

The 'ear shape' patch is necessary but insufficient

we assume $P(Y_{do(C=1)} = 1) = 0.5$ and $P(Y_{do(C=0)} = 0) = 1$.

Now, applying the concept of the probability of sufficiency and necessity, we obtain:

Probability of necessity: $P(Y_{do(C=0)} = 0 | Y = 1, X = 1) = 1$

Probability of sufficiency: $P(Y_{do(C=1)} = 1 | Y = 0, X = 0) = 0.5$

In this example, we can state that variable C has a probability of being a necessary cause.

- How to identify PNS from observational data
 - Exogeneity : X is the cause of Y
 - Monotonicity : Changes on X lead to monotonic changes on Y

Definition 9.2.9 (Exogeneity)

A variable X is said to be exogenous relative to Y in model M if and only if

 $\{Y_x, Y_{x'}\} \perp \!\!\!\perp X.$

Definition 9.2.13 (Monotonicity)

A variable Y is said to be monotonic relative to variable X in a causal model M if and only if the function $Y_x(u)$ is monotonic in x for all u. Equivalently, Y is monotonic relative to X if and only if

$$y'_x \wedge y_{x'} = false. \tag{9.20}$$

- How to identify PNS from observational data
 - Exogeneity : X is the cause of Y
 - Monotonicity : Changes on X lead to monotonically changes on Y

Lemma 2.4 (Pearl (2009)). If C is exogenous relative to Y, and Y is monotonic relative to C, then $PNS(\mathbf{c}, \mathbf{\bar{c}}) = \underbrace{P_t(Y = y | \mathbf{C} = \mathbf{c})}_{sufficiency} - \underbrace{P_t(Y = y | \mathbf{C} = \mathbf{\bar{c}})}_{necessity}.$ (3)

The PNS risk modeling

- Defining the PNS risk on test domain $R_t(\mathbf{w}, \phi, \xi) := \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{T}} \left[\mathbb{E}_{\mathbf{c} \sim P_t(\mathbf{C} | \mathbf{X} = \mathbf{x})} \mathbf{I}[\operatorname{sign}(\mathbf{w}^\top \mathbf{c}) \neq y] + \mathbb{E}_{\mathbf{\bar{c}} \sim P_t(\mathbf{\bar{C}} | \mathbf{X} = \mathbf{x})} \mathbf{I}[\operatorname{sign}(\mathbf{w}^\top \mathbf{\bar{c}}) = y] \right].$ Satisfaction of Monotonicity
- Defining Monotonicity measurement.

$$M_t^{\mathbf{w}}(\phi,\xi) := \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{T}} \mathbb{E}_{\mathbf{c}\sim P_t^{\phi}(\mathbf{C}|\mathbf{X}=\mathbf{x})} \mathbb{E}_{\mathbf{\bar{c}}\sim P_t^{\xi}(\mathbf{\bar{C}}|\mathbf{X}=\mathbf{x})} \mathrm{I}[\mathrm{sign}(\mathbf{w}^{\top}\mathbf{c}) = \mathrm{sign}(\mathbf{w}^{\top}\mathbf{\bar{c}})],$$

then we have

$$R_t(\mathbf{w},\phi,\xi) = M_t^{\mathbf{w}}(\phi,\xi) + 2SF_t(\mathbf{w},\phi)NC_t(\mathbf{w},\xi) \le M_t^{\mathbf{w}}(\phi,\xi) + 2SF_t(\mathbf{w},\phi).$$

Satisfaction of Monotonicity

Connecting the Monotonicity measurement with PNS risk

$$M_t^{\mathbf{w}}(\phi,\xi) = SF_t(\mathbf{w},\phi)(1 - NC_t(\mathbf{w},\xi)) + (1 - SF_t(\mathbf{w},\phi))NC_t(\mathbf{w},\xi).$$
(14)

The following equation understands the above decomposition.

$$P(\operatorname{sign}(\mathbf{w}^{\top}\mathbf{c}) = \operatorname{sign}(\mathbf{w}^{\top}\bar{\mathbf{c}}))$$

=
$$P(\operatorname{sign}(\mathbf{w}^{\top}\mathbf{c}) = y)P(\operatorname{sign}(\mathbf{w}^{\top}\bar{\mathbf{c}}) = y) + P(\operatorname{sign}(\mathbf{w}^{\top}\mathbf{c}) \neq y)P(\operatorname{sign}(\mathbf{w}^{\top}\bar{\mathbf{c}}) \neq y).$$
 (15)

We can further derive Eq.14 as follows.

$$M_{t}^{\mathbf{w}}(\phi,\xi) = SF_{t}(\mathbf{w},\phi)(1 - NC_{t}(\mathbf{w},\xi)) + (1 - SF_{t}(\mathbf{w},\phi))NC_{t}(\mathbf{w},\xi)$$

$$= \underbrace{SF_{t}(\mathbf{w},\phi) + NC_{t}(\mathbf{w},\xi)}_{R_{t}(\mathbf{w},\phi,T)} - 2SF_{t}(\mathbf{w},\phi)NC_{t}(\mathbf{w},\xi)$$

$$= R_{t}(\mathbf{w},\phi,\xi) - 2SF_{t}(\mathbf{w},\phi)NC_{t}(\mathbf{w},\xi).$$
(16)

Satisfaction of Exogeneity

- Exogeneity under different causal assumption
 - 1. C contain all information of Y in X
 - 2. There are no spurious correlation between causal information and domain knowledge
 - 3. C contain not all information of Y in X

Satisfaction of Exogeneity

- Exogeneity under different causal assumption
 - 1. PNS Risk can directly satisfies exogeneity
 - 2. Additional constraint of independency between V and C like MMD
 - 3. Additional constraint of conditional independence is required like IRM constraint.

Generalization analysis

• PNS risk defined on unknown test domain

$$R_t(\mathbf{w}, \phi, \xi) := \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{T}} \big[\mathbb{E}_{\mathbf{c} \sim P_t(\mathbf{C} | \mathbf{X} = \mathbf{x})} \mathrm{I}[\mathrm{sign}(\mathbf{w}^\top \mathbf{c}) \neq y] \\ + \mathbb{E}_{\mathbf{\bar{c}} \sim P_t(\mathbf{\bar{C}} | \mathbf{X} = \mathbf{x})} \mathrm{I}[\mathrm{sign}(\mathbf{w}^\top \mathbf{\bar{c}}) = y] \big].$$

• Connecting source domain and test domain

Theorem 3.2. The risk on the test domain is bounded by the risk on the source domain, i.e.,

$$R_t(\mathbf{w},\phi,\xi) \leq \lim_{k \to +\infty} \beta_k(\mathcal{T} \| \mathcal{S})([M_s^{\mathbf{w}}(\phi,\xi)]^{1-\frac{1}{k}} + 2[SF_s(\mathbf{w},\phi)]^{1-\frac{1}{k}}) + \eta_{t \setminus s}(\mathbf{X},Y),$$

where

$$\eta_{t\setminus s}(\mathbf{X}, Y) := P_t(\mathbf{X} \times Y \notin \operatorname{supp}(\mathcal{S})) \cdot \sup R_{t\setminus s}(\mathbf{w}, \phi, \xi).$$

Generalization analysis

• Using dataset from source domain to evaluate the risk

(1)
$$|SF_{s}(\mathbf{w}, \phi) - \widehat{SF}_{s}(\mathbf{w}, \phi)|$$
 is upper bounded by
 $\mathbb{E}_{S^{n}} \mathrm{KL}(\hat{P}_{s}^{\phi}(\mathbf{C}|\mathbf{X}=\mathbf{x}) \| \pi_{\mathbf{C}}) + \frac{\ln(n/\epsilon)}{2(n-1)} + C.$
(2) $|M_{s}^{\mathbf{w}}(\phi, \xi) - \widehat{M}_{s}^{\mathbf{w}}(\phi, \xi)|$ is upper bounded by
 $\mathbb{E}_{S^{n}} \mathrm{KL}(\hat{P}_{s}^{\phi}(\mathbf{C}|\mathbf{X}=\mathbf{x}) \| \pi_{\mathbf{C}}) + \mathbb{E}_{S^{n}} \mathrm{KL}(\hat{P}_{s}^{\xi}(\bar{\mathbf{C}}|\mathbf{X}=\mathbf{x}) \| \pi_{\bar{\mathbf{C}}}) + \frac{\ln(n/\epsilon)}{2(n-1)} + 2C.$

Optimization process

- Consider the failure case of learned PNS
 - The small perturbation induce changes on prediction

Sematic separatable case

Optimization process

- Consider the failure case of learned PNS
 - Under the case of Sematic separatable, It is worth to evaluate PNS risk

Assumption 4.1 (δ -Semantic Separability). For any domain index $d \in \{s, t\}$, the variable \mathbf{C} is δ -semantic separable, if for any $\mathbf{c} \sim P_d(\mathbf{C}|Y = y)$ and $\mathbf{\bar{c}} \sim P_d(\mathbf{C}|Y \neq y)$, the following inequality holds almost surely: $\|\mathbf{\bar{c}} - \mathbf{c}\|_2 > \delta$.

• When Sematic separatable satisfies in data, then we should add additional constraint on representation avoid to learn trivial PNS.

Optimization process

• Final objective

$$\min_{\phi, \mathbf{w}} \max_{\xi} \ \widehat{M}_s^{\mathbf{w}}(\phi, \xi) + \widehat{SF}_s(\mathbf{w}, \phi) + \lambda L_{\mathrm{KL}}, \ \text{subject to} \ \|\mathbf{c} - \bar{\mathbf{c}}\|_2 > \delta,$$

 For different causal assumption we need to add additional constraint

Experiment

• Can we learn the sufficient and necessary causes?

Experiment

• The OOD generalization ability

Dataset			PACS						VLCS			
Algorithm	Α	С	Р	S	Avg	Min	С	L	S	V	Avg	Min
ERM	84.7 ± 0.4	80.8 ± 0.6	97.2 ± 0.3	$\textbf{79.3} \pm \textbf{1.0}$	85.5	79.3	97.7 ± 0.4	64.3 ± 0.9	73.4 ± 0.5	74.6 ± 1.3	77.5	64.3
IRM	84.8 ± 1.3	76.4 ± 1.1	96.7 ± 0.6	76.1 ± 1.0	83.5	76.4	98.6 ± 0.1	64.9 ± 0.9	$\textbf{73.4} \pm \textbf{0.6}$	$\textbf{77.3} \pm \textbf{0.9}$	78.5	64.9
GroupDRO	83.5 ± 0.9	79.1 ± 0.6	96.7 ± 0.3	78.3 ± 2.0	84.4	79.1	97.3 ± 0.3	63.4 ± 0.9	69.5 ± 0.8	76.7 ± 0.7	76.7	63.4
Mixup	86.1 ± 0.5	78.9 ± 0.8	$\textbf{97.6} \pm \textbf{0.1}$	75.8 ± 1.8	84.6	78.9	98.3 ± 0.6	64.8 ± 1.0	72.1 ± 0.5	74.3 ± 0.8	77.4	64.8
MLDG	86.4 ± 0.8	77.4 ± 0.8	97.3 ± 0.4	73.5 ± 2.3	83.6	77.4	97.4 ± 0.2	65.2 ± 0.7	71.0 ± 1.4	75.3 ± 1.0	77.2	65.2
MMD	86.1 ± 1.4	79.4 ± 0.9	96.6 ± 0.2	76.5 ± 0.5	84.6	79.4	97.7 ± 0.1	64.0 ± 1.1	72.8 ± 0.2	75.3 ± 3.3	77.5	64.0
DANN	86.4 ± 0.8	77.4 ± 0.8	97.3 ± 0.4	73.5 ± 2.3	83.6	77.4	$\textbf{99.0}\pm0.3$	65.1 ± 1.4	73.1 ± 0.3	77.2 ± 0.6	78.6	65.1
CDANN	84.6 ± 1.8	75.5 ± 0.9	96.8 ± 0.3	73.5 ± 0.6	82.6	75.5	97.1 ± 0.3	65.1 ± 1.2	70.7 ± 0.8	77.1 ± 1.5	77.5	65.1
CaSN (base)	$\textbf{87.1} \pm \textbf{0.6}$	80.2 ± 0.6	96.2 ± 0.8	80.4 ± 0.2	86.0	80.2	97.5 ± 0.6	64.8 ± 1.9	70.2 ± 0.5	76.4 ± 1.7	77.2	64.8
CaSN (irm)	82.1 ± 0.3	77.9 ± 1.8	93.3 ± 0.8	$\textbf{80.6} \pm \textbf{1.0}$	83.5	77.9	97.8 ± 0.3	65.7 ± 0.8	72.3 ± 0.4	77.0 ± 1.4	78.2	65.7
CaSN (mmd)	84.7 ± 0.1	$\textbf{81.4} \pm \textbf{1.2}$	95.7 ± 0.2	80.2 ± 0.6	85.5	81.4	98.2 ± 0.7	$\textbf{65.9} \pm \textbf{0.6}$	71.2 ± 0.3	76.9 ± 0.7	78.1	65.9

Table 1: Results on PACS and VLCS dataset

Probable application/Future work

- The scenario which need more stable than accuracy
 - Auto drive
 - OOD generalization
 - Domain adaptation
 - Dynamic system
- Future work
 - More causal assumption
 - More general case