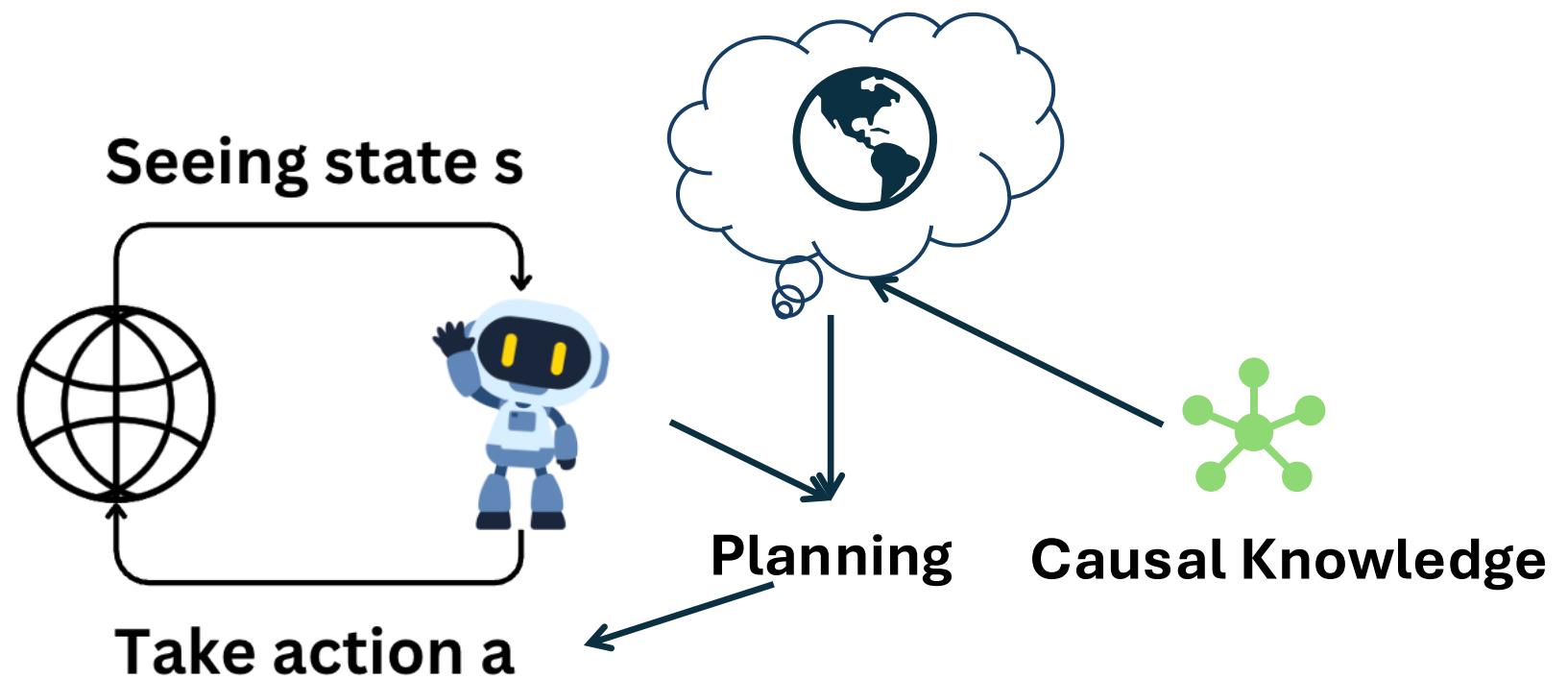


Towards Causal Foundation World Models

Mengyue Yang

Lecturer in AI

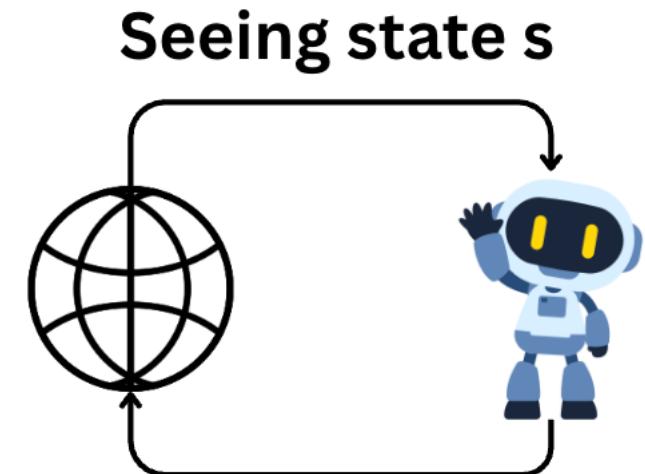
University of Bristol



What is Agent Decision Making?

Agent policy $\pi(a|s)$: The way that agent to achieve the goal

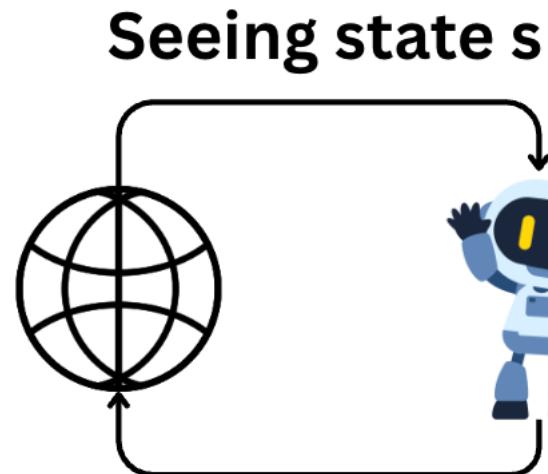
Model Free



Take action a

Improve policy by exploration

Modelling the world

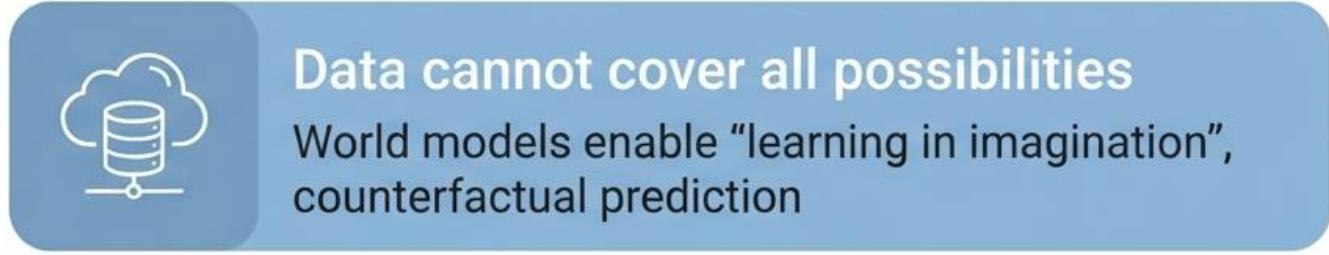
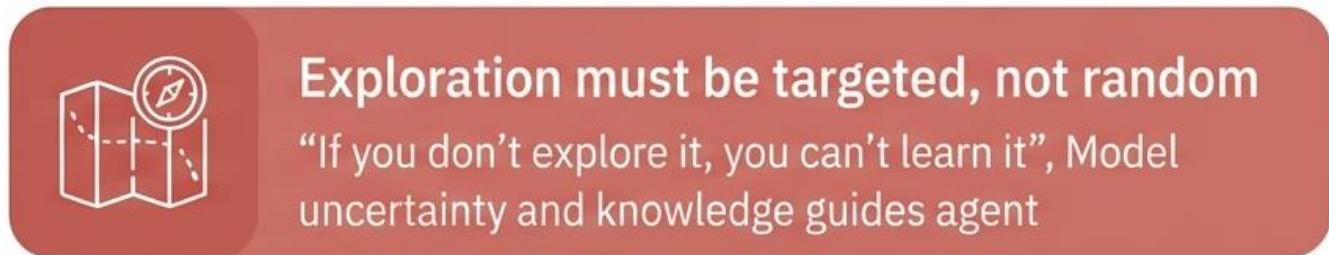


Take action a

Planning from the knowledge
and thinking

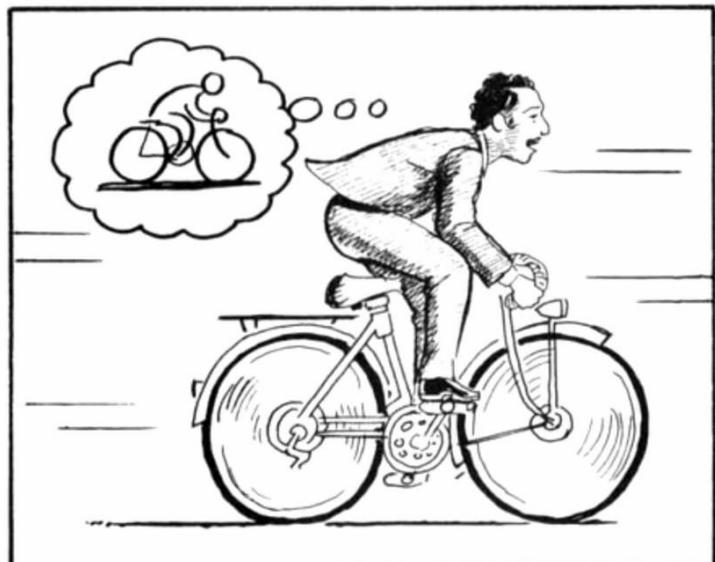
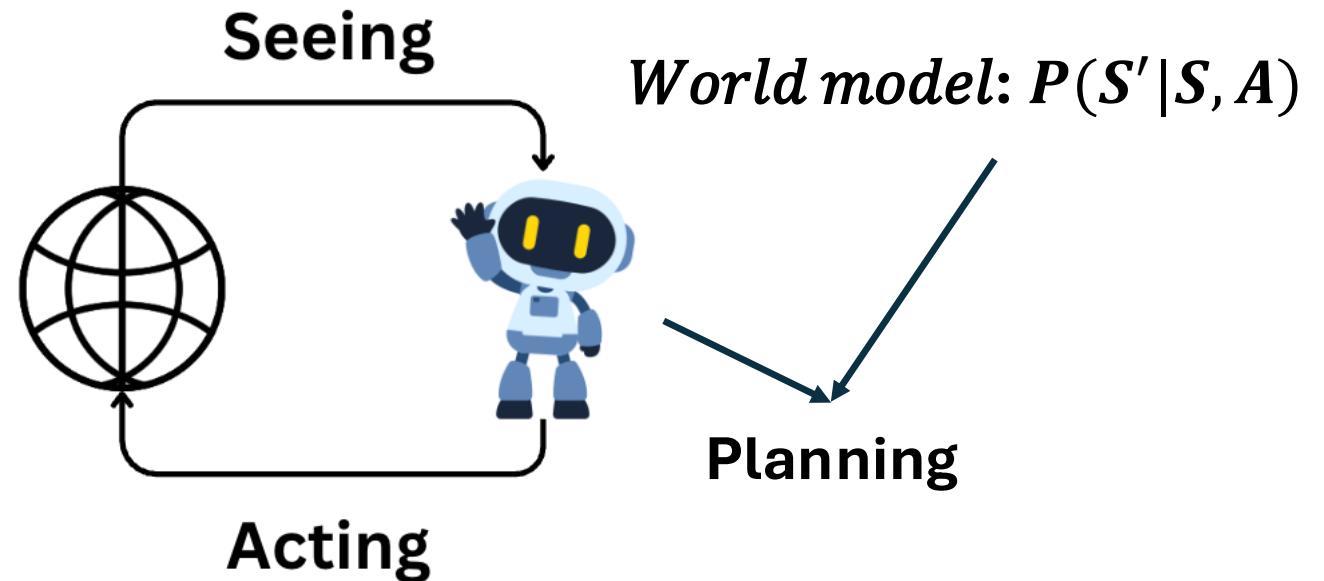
Planning

Why Modelling World is Necessary



What is World Models

World Models modelling the **environment internal transition model**, makes agent **1. predict the future** and **2. reflect the past** possible.



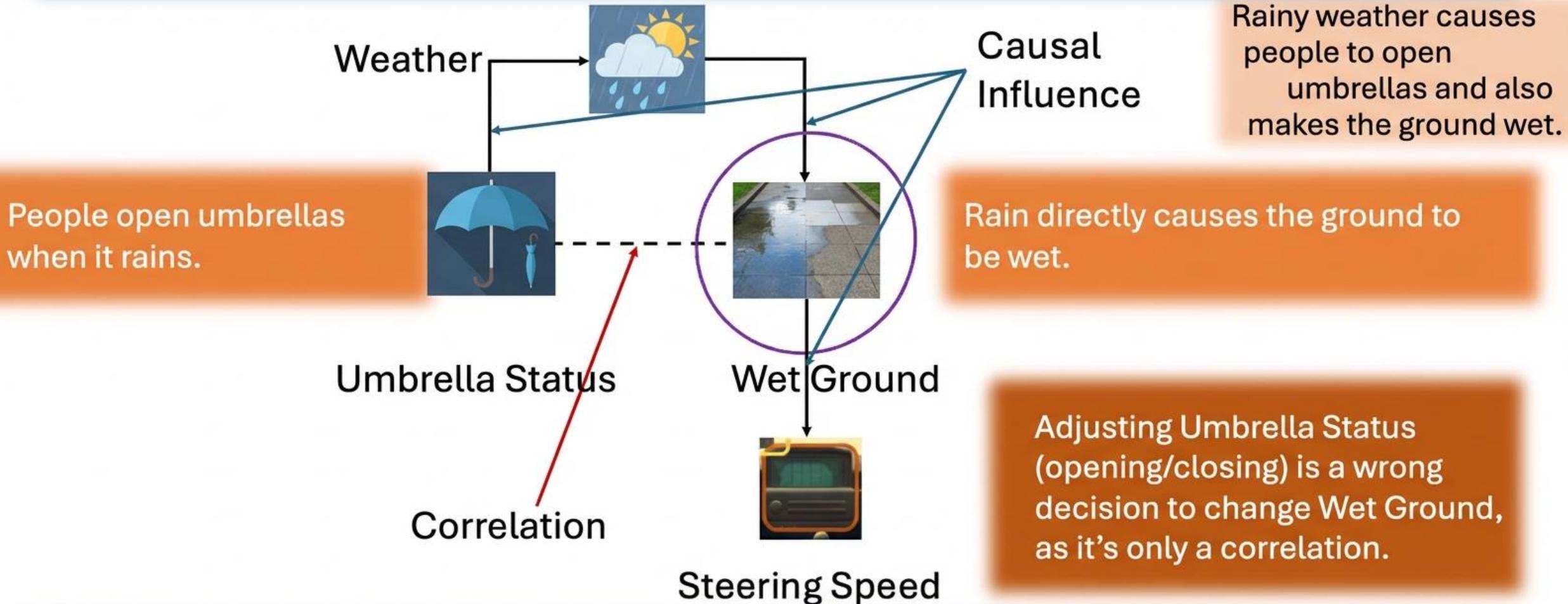
What if I ride slower now? Can I achieve the goal?
Was it a good choice to start earlier?

Picture borrow from Ha and Schmidhuber

Modelling the World \neq Understanding the World

Is current world model perfect?

Mimic the world data doesn't mean model understand the world



Pearl's Causal Hierarchy

Seeing Association

Question:
What is?

What does the smoking tell us about the lung cancer.

Predicting of future
Reflecting of past

Predict something haven't happened

Doing Intervention

Question:
What if?

What will happen if someone keep smoking

=

Intervention Counterfactual

Imagine based on something already happened

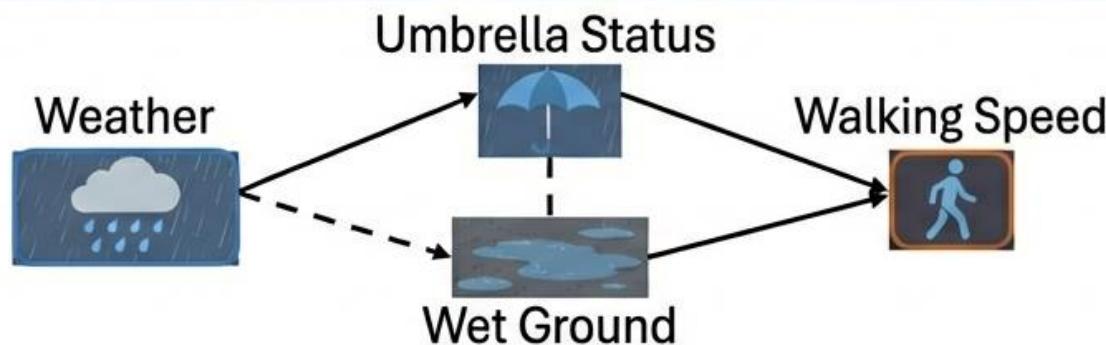
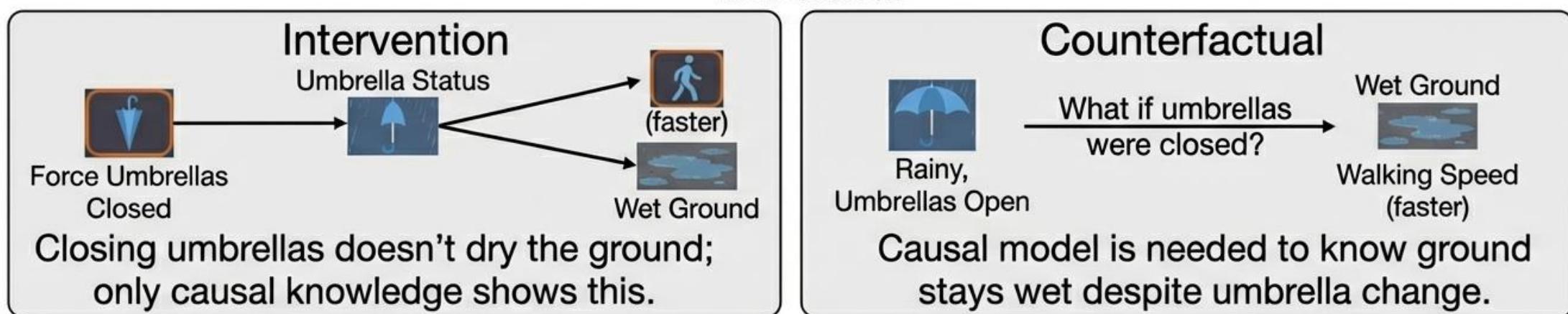
Imagining Counterfactual

Question:
Was it?

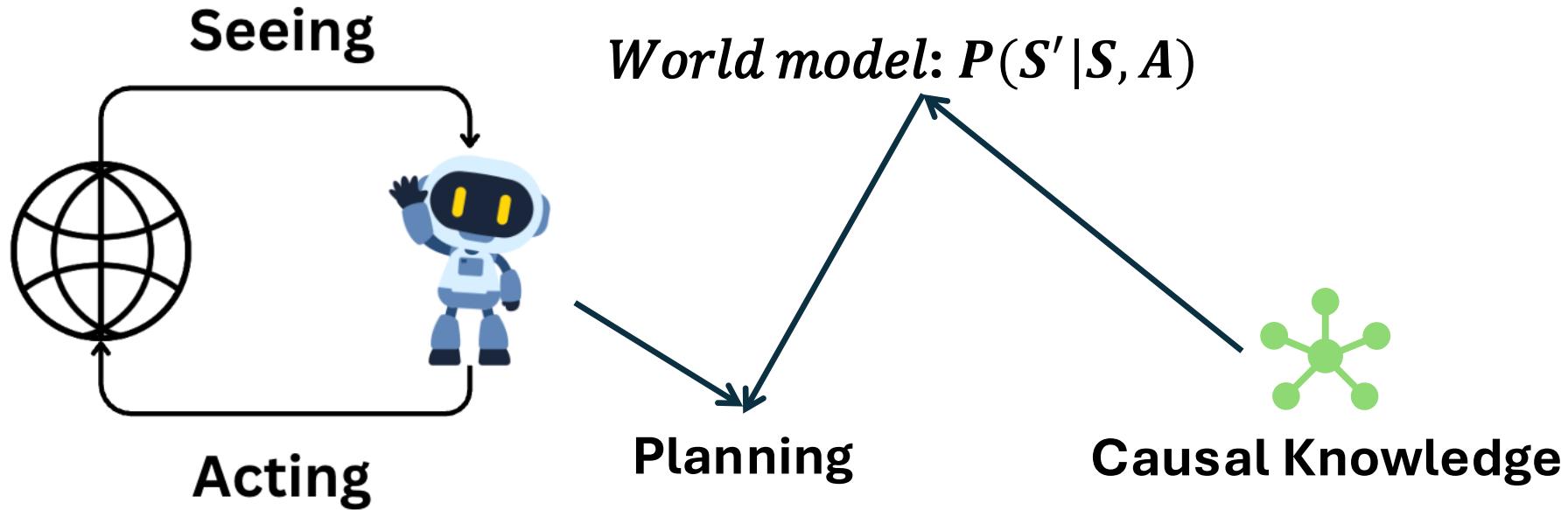
Would the lung cancer got worse if someone smoking.

Causal Diagram

Understanding the underling causal model is a prerequisite for inferring intervention and counterfactual

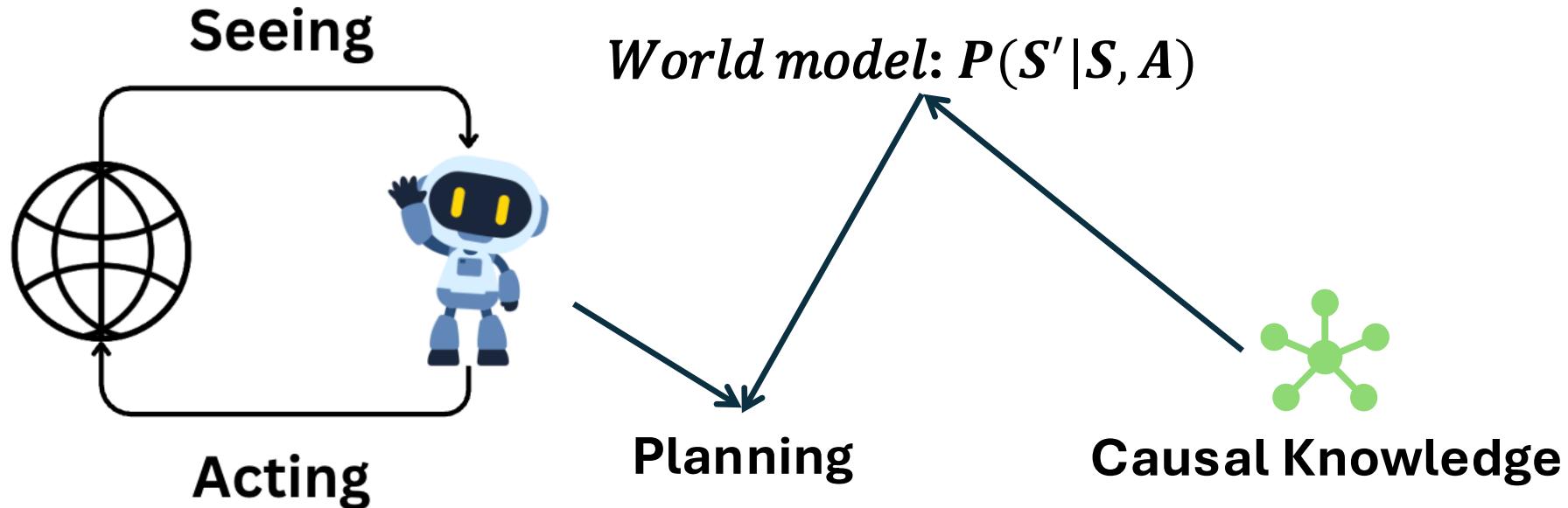


Causal World Models



Remove spurious correlation
where S, A have causal effect on S'

Causal World Models



Focus planning by the true causal relations

Predicting of future
Reflecting of past

=

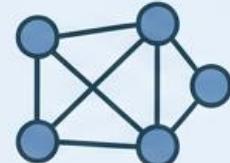
Intervention
Counterfactual

Causal World Models

World Model Comparison: How Causal Knowledge Removes Spurious Correlation and Improves Decision Making

No Causal World Model (Spurious Correlation)

World Model



Umbrellas cause Wet Ground

Planning

Trying to close umbrellas to dry the ground

Decision Failed: Ground Still Wet

Causal World Model (Causal Knowledge)

World Model

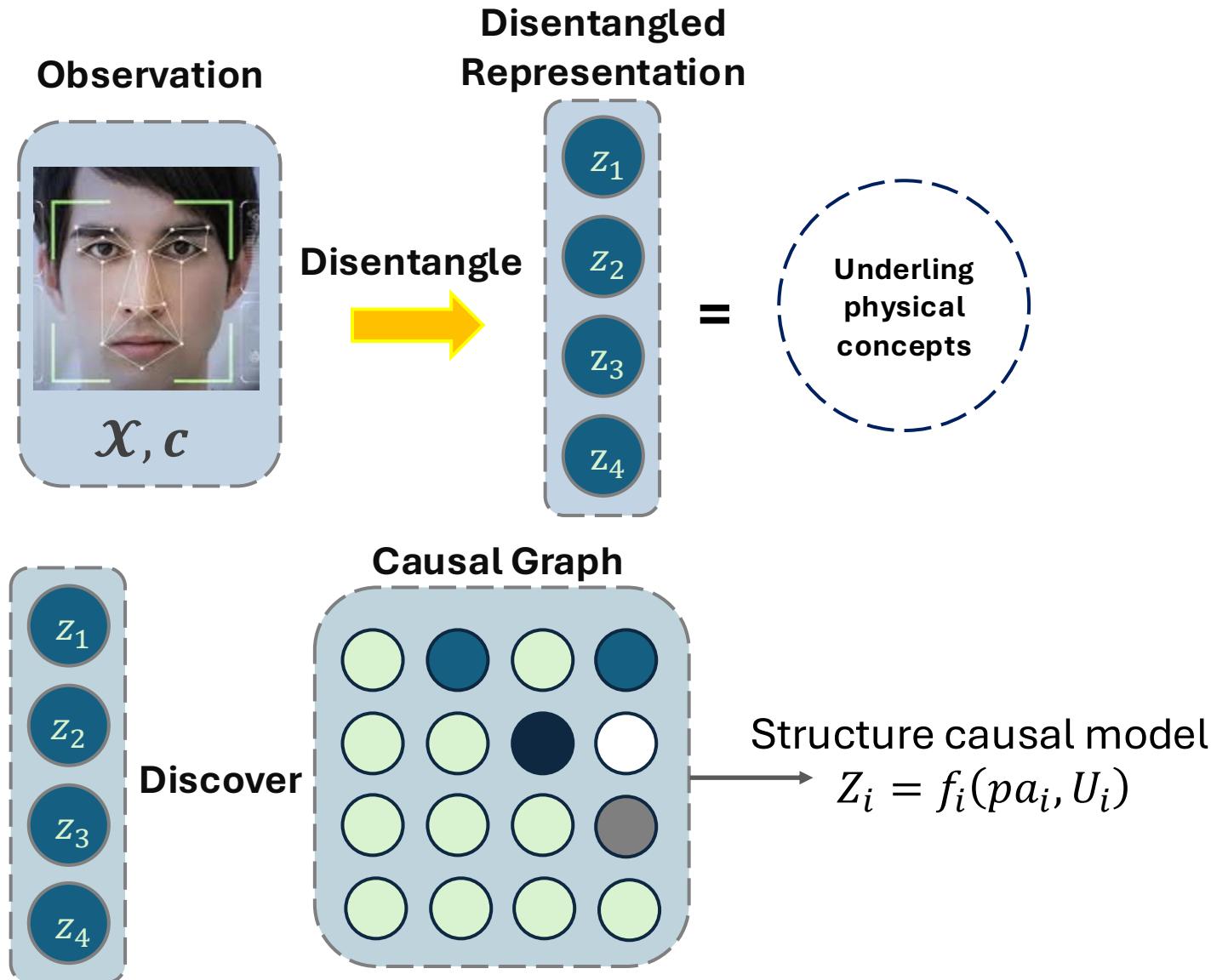
Umbrellas \rightarrow Wet Ground

Planning

Chooses not to close umbrellas, waits or finds shelter

Decision Successful: Ground Becomes Dry (Correct Causal)

Causal World Models – Representation + Causal Structure



Intervene causes **Smile**,
Mouth Open will change



Smile = -0.75

But Intervene effect
concept **Mouth Open**,
Smile will **not** be influenced

Mouth Open = -0.75

The Challenge of Scaling in Open-ended Environments

Open-ended world

Infinite state, action, multi-agent dynamic - exploding of strategy

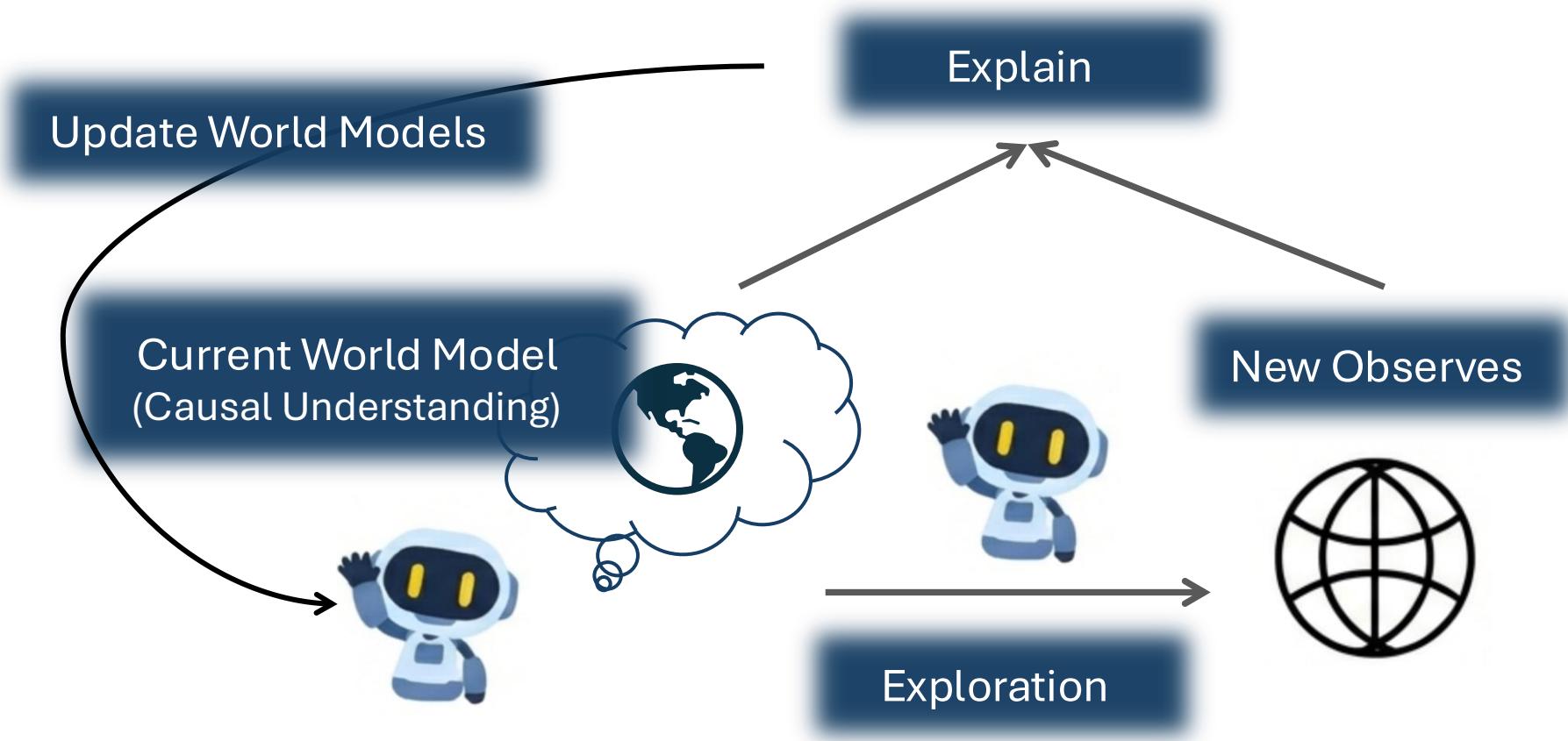
Chat Agent

Automatic driving in real-world

Football AI

Partial observation, causality changing through the observation window....

Continual Causal Learning in Open-Ended Worlds



Causal Discovery in Open-Ended World

[NeurIPS 2025]

Curious Causality-Seeking Agents in Open-Ended World

Zhiyu Zhao,

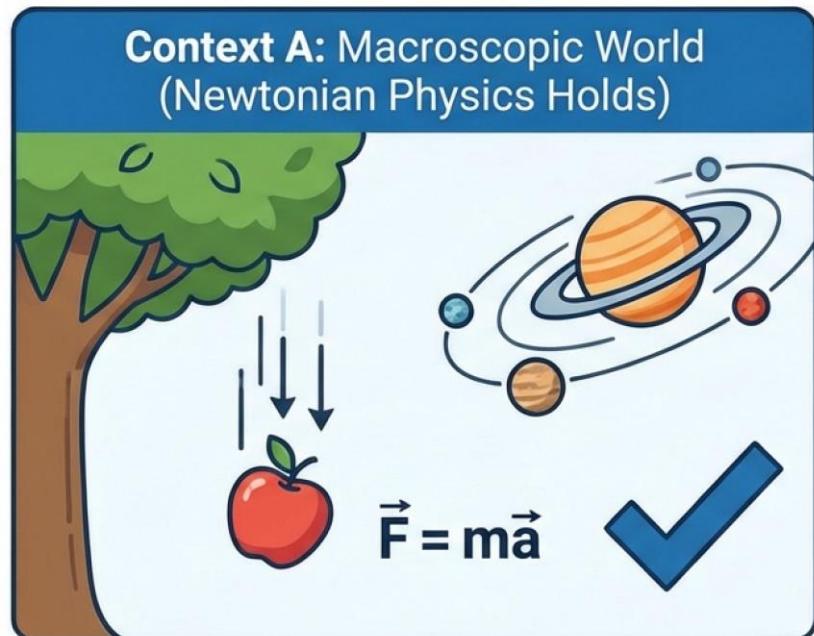
Haoxuan Li, Haifeng Zhang,

Jun Wang, Francesco Faccio, Jürgen Schmidhuber, Mengyue Yang

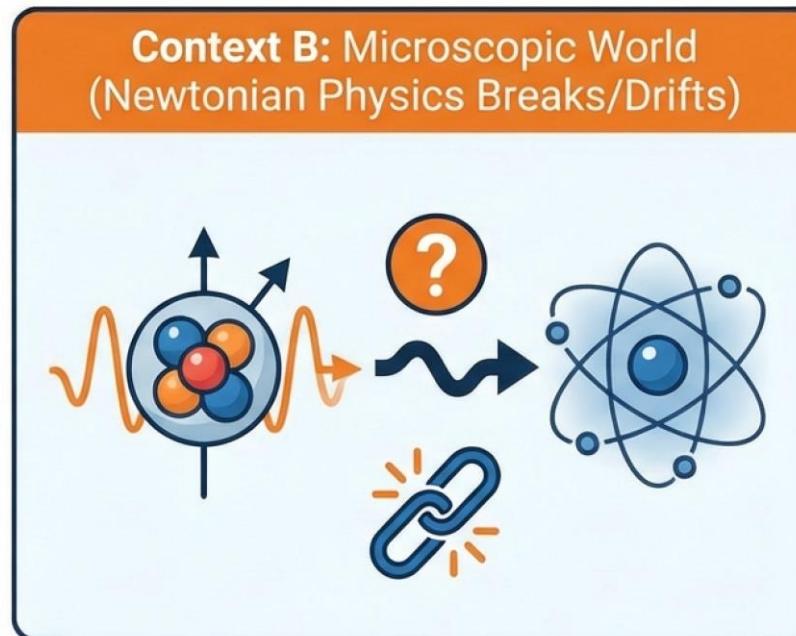
Motivation: Causal “Drift” in Open Worlds

Causal Discovery in Open-Ended World

Causal “Drift” in Open Worlds



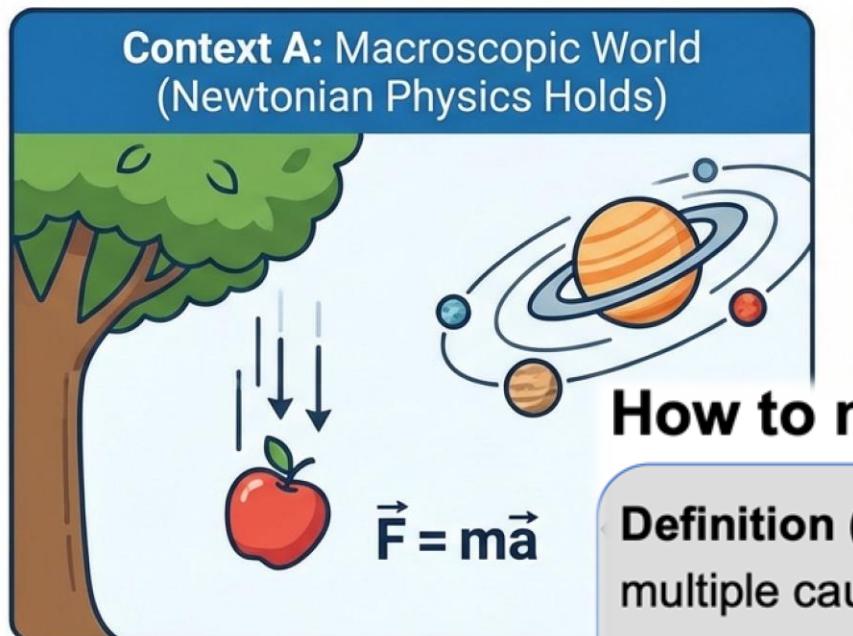
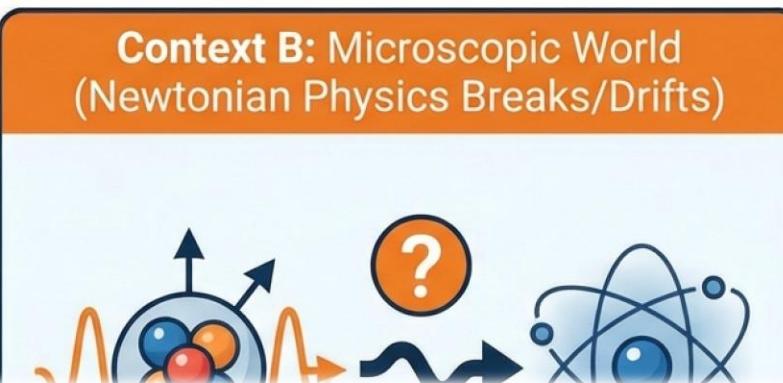
Classical Mechanics:
Explains motion perfectly.



Quantum Phenomena:
Classical mechanics fails to explain.

Causal Discovery in Open-Ended World

Causal “Drift” under Different Condition



How to model: The Meta-Causal Graph (MCG)

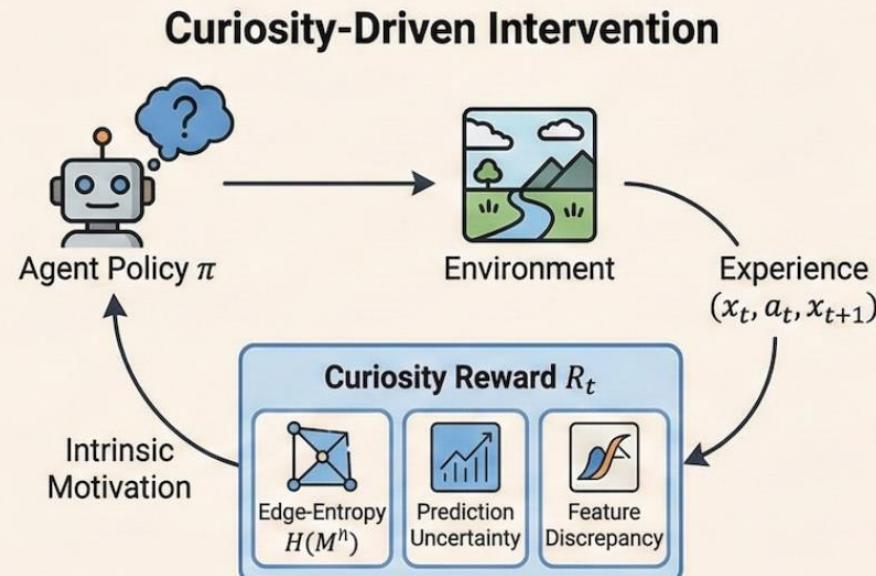
Classical Mechanics
Explains motion perfectly

Definition (Simplified): An MCG is a minimal representation that contains multiple causal subgraphs, $\{G_1, G_2, \dots, G_k\}$.

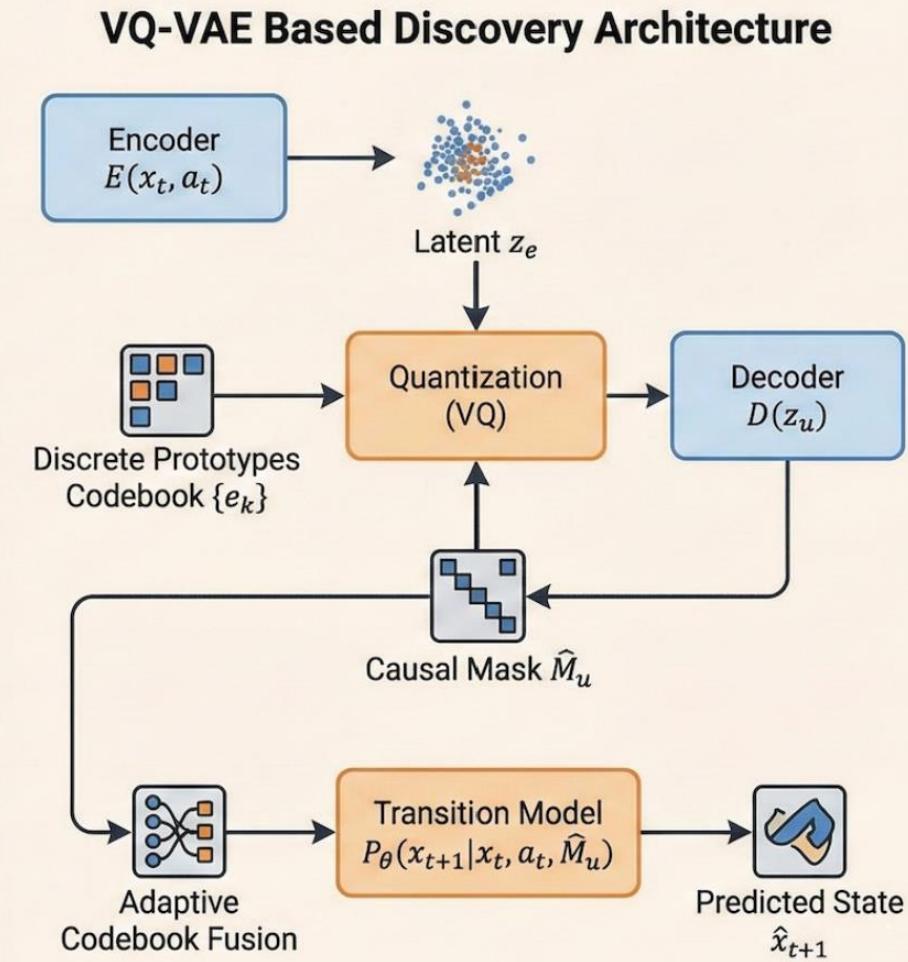
- Each subgraph G_i corresponds to a unique meta state m_i .
- The active G_i then governs the transition dynamics: $P(s_{t+1} | s_t, a_t)$.

Learning in Open-Ended World

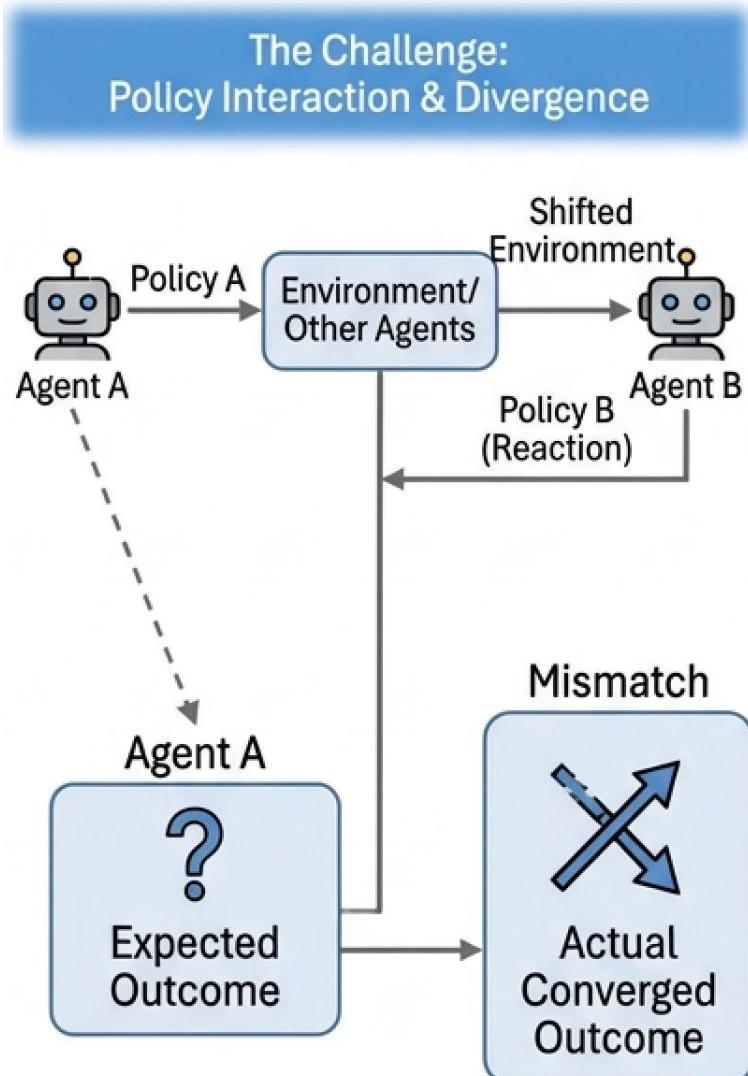
Causal Understanding =
Statistical Learning + Active Exploration



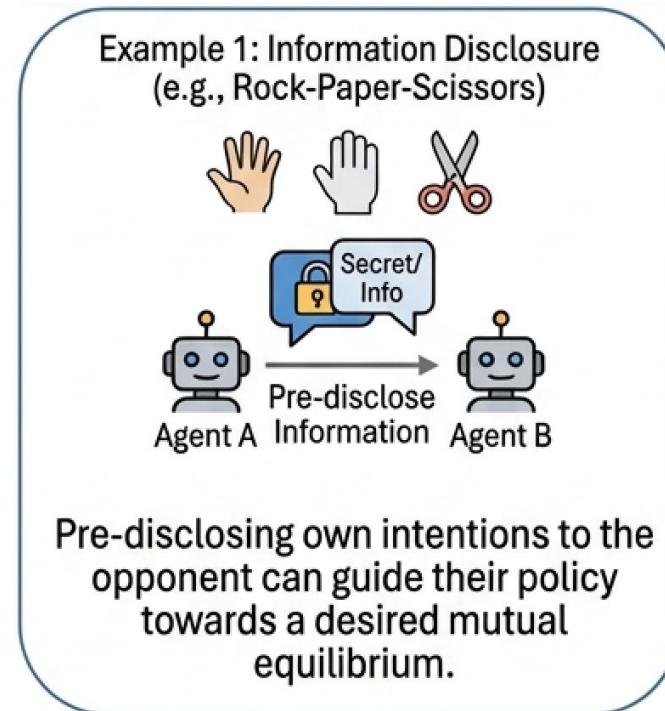
Updating causal graph in the learning loop



What If the World can be Changed by Policy

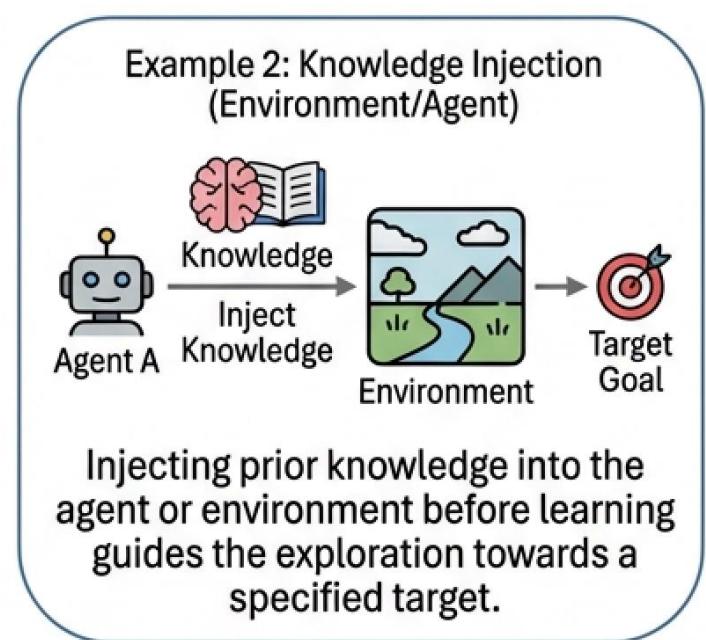


Our Explorations:
Pre-policy Intervention for Convergence



Pre-disclosing own intentions to the opponent can guide their policy towards a desired mutual equilibrium.

Leverage knowledge from foundation models



Injecting prior knowledge into the agent or environment before learning guides the exploration towards a specified target.

Future Outlook: Towards Generalizable Causal Representations

Current: Task-Specific Causal Learning (RL Exploration)

Football AI

Chat Agent/
Driving

Limited transferability.
Re-learns basic physics
from scratch for each task.

Goal: Learn Universal Causal Primitives

Future: Generalizable Causal Foundation

Generic Warehouse Robot

Household Kitchen

Sci-Fi Planet Rover

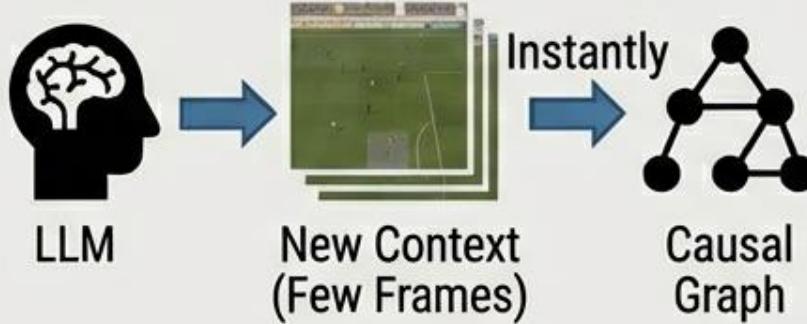
Learn invariant mechanisms across domains

Enable zero-shot generalization to new environments.

Moving from learning '**how to play football**' to learning '**how objects interact physically**'.

Future Outlook: Causal Foundation World Models & Scaling

In-Context Causal Learning



Leverage LLM reasoning for fast, in-context causal discovery

The Scaling Hypothesis

Causal understanding emerges and robustifies with large-scale pre-training.

Final Goal: A unified, scalable world model with robust causal reasoning capabilities.